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Abstract. In this article we calculate several divergent amplitudes in φ4-theory on non-commutative
space-time (Θ0i �= 0) in the framework of interaction-point time-ordered perturbation theory (IPTOPT),
continuing work done in hep-th/0209253. On the ground of these results we find corresponding Feynman
rules that allow for a much easier diagrammatic calculation of amplitudes. The most important feature
of the present theory is the absence of the UV/IR mixing problem in all amplitudes calculated so far.
Although we are not yet able to give a rigorous proof, we provide a strong argument for this result to hold
in general. Together with the Feynman rules we found, this opens promising vistas onto the systematic
renormalization of non-commutative field theories.

1 Introduction

In quantum field theories on non-commutative spaces, we
know of two major problems. The first one is the famous
so-called “UV/IR mixing”. In using standard perturbative
techniques a completely new type of non-renormalizable,
infrared-like singularities occurs [1, 2]. Attempts to cure
this imponderability have been made, but no convincing
solution has been found so far.

The second problem is the loss of unitarity on non-
commutative spaces with Minkowskian signature [3, 4].
The first resolutions made considerable, undesirable re-
strictions (e.g. commutativity of time) and were thus not
very satisfying. In [5, 6] two proposals to cure this severe
problem have been made. A similar approach was elabo-
rated in [7, 8]. There the Gell-Mann–Low formula for the
Green functions

Gn(x1, . . . , xk)

:= in

n!

∫
d4z1 . . . d4zn

〈
0|Tφ(x1) . . . φ(xk)LI(z1) . . . LI(zn)|0〉con

,

was used. The theory is quantized canonically in Minkowski
space instead of employing the Euclidean path integral
(PI). As shown in [3,6,8], unitarity is recovered by choosing
the Lagrangian as the starting point of this formulation of
non-commutative field theories. It must be stressed that
for non-commutative time (Θ0i �= 0) a theory different
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from the usual approach is considered and new results are
to be expected.

Technically this can easily be seen by noting that time
ordering (TO) – which contains Θ(x0−y0) – stands in front
of the ∗-product, which, in the formulation f(x) ∗ g(x) :=
ei/2∂x,µΘµν∂y,ν f(x)g(y)|x=y, contains an infinite number of
time derivations for Θ0i �= 0. The consequences of this
rather obvious fact were investigated in detail in [7, 8] for
φ3 and φ4 in [9] for φ4.

In this last work it was also shown that if one employs
another definition of the �-product,

LI(zl) =
g

4!
(φ � φ � φ � φ)(zl)

=
∫ 3∏

i=1

(
d4si

d4li
(2π)4

eilisi

)
φ

(
zl − l̃1

2

)
φ

(
zl + s1 − l̃2

2

)

×φ

(
zl + s1 + s2 − l̃3

2

)
φ(zl + s1 + s2 + s3), (1)

a physical interpretation of the ensuing techniques is pos-
sible (aside from making the calculations easier and more
transparent). Non-commutativity can be seen explicitly to
“spread” the interaction over space-time. The time order-
ing only acts on the time-stamp of the interaction point
(IP) z0

l , but not on the new, smeared-out “physical” coor-
dinates of the field operators. Thus the four fields of the
interaction point are not time-ordered with respect to each
other, time ordering being realized between external and
interaction points only. This fact gave reason to the no-
tion of interaction-point time-ordered perturbation theory
(IPTOPT) introduced in [9], to distinguish from a true
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Fig. 1. Amplitudes as mentioned in the text

causal time ordering. The fields at the interaction point
are not causally connected, and “micro-” (better “nano-”)
causality is violated at the non-commutative vertex [9,10].

In [9] this approach was developed into IPTOPT in
analogy to pre-Feynmanian commutative perturbation
theory [11]. The techniques developed so far are still rather
cumbersome (though examples of their applicability are
given below) and true diagrammatics including the respec-
tive Feynman rules (FR) are the next step in the imple-
mentation of this program.

This is undertaken in the present work (see also [12]),
which already rewards us with a possible solution to the
second great problem of non-commutative field theories,
UV/IR mixing.

To reach these goals we set out from previous work. In
Sect. 2 we employ the non-commutative version of the time
ordered expression for Green functions [11], (39) of [9], to
obtain explicit results for the Fourier-transformed (FT),
amputated on-shell two-point one-loop amplitude Γ (2,1)

(tadpole, Fig. 12), two-point two-loop amplitude Γ (2,2)

(snowman, Fig. 3), and four-point one-loop amplitude
Γ (4,1) (fish, Fig. 4); see Fig. 1.

In Sect. 3 we return to the result for the off-shell non-
amputated Green function G(2,1) obtained in [9] by explic-
itly commuting out the free field operators. Retracing one
step, we explicitly state the full off-shell amplitude, the
correction to the propagator at one loop.

This result allows us to “read off” the TO propaga-
tor of our theory and the algorithm that allows us the
construction of general diagrams.

The last missing item, the vertex, is easily obtained
and completes the set of FR of IPTOPT.

Section 4 is devoted to a demonstration of the correct-
ness and applicability of our new FR by employing them
in redoing the calculations of Sect. 2. Of special interest
to the issue of UV/IR mixing is a certain two-point three-
loop amplitude Γ (2,3) (two tadpoles inserted into a third,
the so-called mouse-diagram of Fig. 5), where it generates
new divergences. We calculate this expression in Sect. 4.4.

The discussion of Sect. 5 is mainly dedicated to what
our results tell us about the UV/IR problem. First we note
that it does not appear anywhere in the determined ampli-
tudes, especially not in Γ (2,3) which remains – in contrast
to the results normally obtained in non-commutative field
theory – void of new divergences. This most interesting
feature of the present theory encourages us to put forth a

general argument for the absence of this notorious problem
in IPTOPT, which we do in Sect. 5.2, at least in its usual
form. A short remark on the PT invariance of the obtained
amplitudes is made in Sect. 5.3.

In the Outlook, Sect. 6, we give lines along which a rig-
orous proof (or disclaim) of the general absence of UV/IR
mixing in IPTOPT may proceed. We also list the next
steps in the program of IPTOPT, among which are of
course the attempt at a renormalization of this non-com-
mutative field theory.

2 Examples

Now we want to look at some prominent diagrams with
the help of (39) of [9]:

Γ (qσ1
1 , . . . , qσE

E ) = lim
ε→0

gV

(4!)V

∫ I∏
i=1

d3ki

(2π)32ωki

×
V −1∏
v=1

i(2π)3δ3
(∑I

i=1 Jviki +
∑E

e=1 Jveσeqe

)
∑

v′≤v

(∑I
i=1 Jv′iωki

+
∑E

e=1 Jv′eωqe

)
+ iε

× exp


iθµν


 I∑

i,j=1

Iijk
+
i,µk+

j,ν +
I∑

i=1

E∑
e=1

Iieσek
+
i,µqσe

e,ν

+
E∑

e,f=1

Iefσeσfqσe
e,µq

σf

f,ν




 . (2)

The vertex that is missing in the product over v is the
last one. Note that this formula, because of the somewhat
unusual definition of the S-matrix used in [9], has some
extra factors i with respect to the usual expression.

Here the internal (carrying the momenta k) and exter-
nal (carrying the momenta q) lines are oriented forward
in time (note, however, that the external momenta are
always defined going out of a vertex). Then the incidence
matrices Jvi, Jve are equal to −1 if the line leaves v and
to +1 if the line arrives at v. Similarly, σe = −1 if the line
e leaves xe and σe = +1 if the line e arrives at xe. The
matrices Iij , Iie, Ief are the intersection matrices, which
describe the time configuration of the lines at a vertex.
They will be defined below.

2.1 Two-point one-loop tadpole

To see how the formula works, we first want to review
the on-shell one-loop correction to the two-point function.
One typical contribution to this diagram is shown in Fig. 2.
With (2) a general contribution reads

Γ (2,1) =
g

4!

∫
d3k

(2π)32ωk
· 1 · exp (iθµνφµν) , (3)

where Φµν is the phase depending on the special configu-
ration of lines at the vertex. Since there is only one inner
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Fig. 2. The contribution (e, 1̄, f, 1)

line, the Iij term in (2) is vanishing. For the Iie term we
have to look at all possible configurations of lines at the
4-field vertex v. We have

Iij =
1
2

∑
v

τv
ijJviJvj , Iie =

1
2

∑
v

(τv
ie − τv

ei) JviJve,

Ief =
1
2

∑
v

τv
efJveJvf . (4)

The sum is over all vertices in a particular graph; τv
ie = +1

if the line i is connected to an “earlier” field φ in the vertex
v than the line e, otherwise τv

ij = 0. We have σe = −1,
Jve = +1, σf = +1, Jvf = −1. For the inner line we have
to distinguish between the one leaving (we denote this by
i = 1̄) and the one arriving (i = 1). Then Jv1̄ = −1 and
Jv1 = +1. Note that the inner line is by definition oriented
forward in time and k1 ≡ k1̄. We write the time-ordering
configuration at the vertex as an array; the contribution
in Fig. 2 is labelled (e, 1̄, f, 1). Then we find for the Iie and
the Ief terms

∑
i=1,1̄

k+
i Iie(−q−

e ) +
∑

i=1,1̄

k+
i Iif (+q+

f )

+
∑

e′,f ′=e,f

Ie′f ′
(
σe′q

σe′
e′
) (

σf ′q
σf′
f ′

)
=

(e, f, 1̄, 1) : 0 + 0 +
1
2
q−
e q+

f ,

(f, e, 1̄, 1) : 0 + 0 +
1
2
q+
f q−

e ,

(1̄, 1, e, f) : 0 + 0 +
1
2
q−
e q+

f ,

(1̄, 1, f, e) : 0 + 0 +
1
2
q+
f q−

e ,

(e, 1̄, 1, f) : 0 + 0 +
1
2
q−
e q+

f ,

(f, 1̄, 1, e) : 0 + 0 +
1
2
q+
f q−

e ,

(1̄, e, f, 1) : −k+
1 (−q−

e ) + k+
1 q+

f +
1
2
q−
e q+

f ,

(1̄, f, e, 1) : −k+
1 (−q−

e ) + k+
1 q+

f +
1
2
q+
f q−

e ,

(e, 1̄, f, 1) : +k+
1 q+

f +
1
2
q−
e q+

f ,

(1̄, f, 1, e) : +k+
1 q+

f +
1
2
q+
f q−

e ,

(1̄, e, 1, f) : −k+
1 (−q−

e ) +
1
2
q−
e q+

f ,

(f, 1̄, e, 1) : −k+
1 (−q−

e ) +
1
2
q+
f q−

e .

Thus, for the sum over all possible phase factors, we obtain

∑
φ

exp (iθµνφµν) = 2 cos
(

1
2
θµνq−

e,µq+
f,ν

)
(5)

×
(
3e0+eiθµνk+

1,µq−
e,ν +eiθµνk+

1,µq+
f,ν +eiθµν(k+

1,µq−
e,ν+k+

1,µq+
f,ν)
)
.

Inserting this into (3) and with q+
f = −q−

e , we find for the
total Γ

Γ
(2,1)
tot =

g

12

∫
d3k

(2π)32ωk

(
4 + 2 cos(θµνk+

µ q+
f,ν)
)
. (6)

This result agrees with (25) of [9], where the same ampli-
tude was obtained by explicitly commuting out the free
field operators.

2.2 Two-loop snowman

For the two-loop snowman, in addition to the inner con-
figuration of the lines at the vertices, we have to respect
the two possibilities of time ordering of the vertices; see
Fig. 3. With V = 2, E = 2, I = 3, (2) reads for the left
graph, where the vertex v is before the vertex w:

Γ (2,2) =
g2

(4!)2

∫
d3k1d3k2d3k3

(2π)98ω1ω2ω3
(7)

× i(2π)3δ3 (−k2 − k3 − qe − qf )
−ω2 − ω3 + ωe − ωf + iε

exp (iθµνφµν) .

We have Jv2 = Jv3 = +1, Jw2 = Jw3 = −1, σe = +1,
σf = −1. We obtain a non-trivial Iij term from the vertex
v. For example, the phase of the vertex v in the left graph is

(2, 1̄, 3, 1)v : −k+
1 k+

3 +
1
2
k+
2 k+

3 , (8)

and is similar for the other 11 contributions. For the vertex
w the Iij and Iie terms are non-zero. Again, we present
only one contribution (note that −q−

e = +q+
f , owing to

momentum conservation):

(e, 2, 3, f)w :

1
2
k+
2 (−q−

e ) +
1
2
k+
3 (−q−

e ) +
1
2
k+
2 q+

f +
1
2
k+
3 q+

f +
1
2
k+
2 k+

3

= k+
2 q+

f + k+
3 q+

f +
1
2
k+
2 k+

3 . (9)
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Fig. 3. a (2, 1̄, 3, 1) × (e, 2̄, 3̄, f), b (e, 2̄, 3̄, f) × (2, 1̄, 3, 1)

Collecting the other 23 terms would be fairly edifying for
a computer. Summing up all contributions, using again
q−
e = −q+

f , integrating out k3 and setting ε = 0 yields

Γ
(2,2)
left = − ig2

(4!)2

∫
d3k2

(2π)38ω3
2

∫
d3k1

(2π)32ω1
2 cos

(
1
2
k+
2 k̃−

2

)

×
(
3 + e−iθµνk+

1,µk+
2,ν + e+iθµνk+

1,µk−
2,ν

+ e−iθµν(k+
1,µk+

2,ν−k+
1,µk−

2,ν)
)

× 2 cos
(

1
2
k+
2 k̃−

2

)(
6 + 2 cos

(
θµνk+

2,µq+
f,ν

)
(10)

+2 cos
(
θµνk−

2,µq+
f,ν

)
+ 2 cos

(
θµν(k+

2,µ − k−
2,µ)q+

f,ν

))
.

The first two lines of the integral kernel are exactly (5), with
the obvious replacements (note the correct signs coming
from the σ and the J) −q−

e → +k+
2 and −q+

f → +k+
3 →

−k−
2 . For Γ

(2,2)
right we find the same expression with k+

2,3 →
−k+

2,3, because of the reversed sign of Jve, etc. This yields
exactly the complex-conjugated expression, so with the
help of 4 cos2

(
x
2

)
= 2 + 2 cos(x) we get

Γ
(2,2)
tot = − ig2

(4!)2

∫
d3k2

(2π)38ω3
2

(
2 + 2 cos(k+

2 k̃−
2 )
)

(11)

×
(
6 + 2 cos

(
k+
2 q̃+

f

)
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Fig. 4. Two contributions to Γ (4,1)

+2 cos
(
k−
2 q̃+

f

)
+ 2 cos

(
(k+

2 − k−
2 )q̃+

f

))

×
∫

d3k1

(2π)32ω1

(
6 + 2 cos

(
k+
1 k̃+

2

)
+ 2 cos

(
k+
1 k̃−

2

)

+2 cos
(
k+
1 (k̃+

2 − k̃−
2 )
))

.

Note the extra i due to the slightly unusual definition of
the S-matrix used in [9].

2.3 Four-point one-loop correction

Finally, for the one-loop correction to the t-channel four-
point function we have the contributions of Fig. 4.

Without going into detail with respect to the phase,
we can prove the IR finiteness of the sum of
these contributions:

Γ (4,1) =
g2

(4!)2

∫
d3k2

(2π)32ω2

∫
d3k3

(2π)32ω3
(12)

×
(

i(2π)3δ3 (−k2 − k3 − qe − qf )
−ω2 − ω3 + ωe − ωf + iε
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×Ψ
(
−q−

e ,−q+
f ,−k+

2 ,−k+
3

)
×Ψ

(−q−
g ,−q+

h , k+
2 , k+

3

)
+

i(2π)3δ3 (−k2 − k3 − qg − qh)
−ω2 − ω3 + ωg − ωh + iε

×Ψ
(
−q−

e ,−q+
f , +k+

2 , +k+
3

)

×Ψ
(−q−

g ,−q+
h ,−k+

2 ,−k+
3

))
.

Here the phase Ψ will be defined in Sect. 3.5. With conser-
vation of the global 4-momentum δ4(q−

e +q+
f +q−

g +q+
h ), we

have ωg −ωh = −(ωe −ωf ) in the denominator of the sec-
ond term. Before integrating out k3 we let k2 → −k2,k3 →
−k3 in the second term, so that k3 = −k2 − qe − qf in
both terms. Thus we find

Γ (4,1) = − g2

(4!)2

∫
d3k2

(2π)32ω2

1
(2π)32ω3

i(2π)3 (13)

×
(

Ψ
(

−q−
e , −q+

f , −k+
2 , −k+

3

)
Ψ
(

−q−
g , −q+

h , k+
2 , k+

3

)
ω2 + ω3 − (ωe − ωf ) − iε

+
Ψ
(

−q−
e , −q+

f , −k−
2 , −k−

3

)
Ψ
(

−q−
g , −q+

h , k−
2 , k−

3

)
ω2 + ω3 + (ωe − ωf ) − iε

)∣∣∣∣∣
k3=−(k2+qe+qf )

.

We find that the denominators are strictly positive,

|(ω2 + ω3)|2 − |(ωe − ωf )|2

= k2
2 + m2 + (k2 + qe + qf )2 + m2 + 2ω2ω3

−q2
e − m2 − q2

f − m2 + 2ωeωf

= 2
(
k2(k2 + qe + qf ) + qeqf + ω2ω3

+ωeωf

)
k3=−(k2+qe+qf )

> 0

(|p · q| < ωpωq, m > 0).

Thus, no new kinematic IR divergence occurs with respect
to the commutative case, although the usual cancellations
could not take place because of the different phases. Hence
we made sure that no novel problems arise from this quar-
ter.

3 The Feynman rules for IPTOPT

To obtain the set of diagrammatic rules for our model we
have to answer three questions: What is the vertex? What
is the propagator? How to construct graphs?

The first of these we postpone to Sect. 3.5, while the
other two are tackled by retracing our steps to the explicit
result for the tadpole obtained in [9].

3.1 The full non-commutative propagator

We start our search for the Feynman (-like) rules of non-
commutative IPTOPT at the explicit expression for the
two-point one-loop tadpole G(2,1), (24) of [9].

Repeating the notation from [9] (recall that p± :=
(±ωp,p), ωp :=

√
p2 + m2, p̃ν := pµθµν):

I±±((±p)+, (±q)+)

=
∫

d3k

(2π)32ωk

(
3 + eip±k̃++iq±k̃+

+ eip±k̃+
+ eiq±k̃+)

≡ I(p±, q±) , (14)

we retrace one step and give the unamputated FT
Green function

G(2,1)(p, q) = − lim
δ1,δ2→0

g

12
(2π)4δ(p + q) (15)

×
(

1
p0−ωp+iδ1

1
ωp+ωq−iδ2

cos( 1
2p+q̃+)

4ωpωq
I(p+, q+)

+
1

q0−ωq+iδ1

1
ωp+ωq−iδ2

cos( 1
2p+q̃+)

4ωpωq
I(p+, q+)

+
1

p0−ωp+iδ1

1
q0+ωq−iδ2

cos( 1
2p+q̃−)

4ωpωq
I(p+, q−)

+
1

q0−ωq+iδ1

1
p0+ωp−iδ2

cos( 1
2p−q̃+)

4ωpωq
I(p−, q+)

+
1

ωp+ωq−iδ1

1
−q0−ωq+iδ2

cos( 1
2p−q̃−)

4ωpωq
I(p−, q−)

+
1

ωp+ωq−iδ1

1
−p0−ωp+iδ2

cos( 1
2p−q̃−)

4ωpωq
I(p−, q−)

)
.

Making use of local energy-momentum conservation
and of the relation q± = −p∓, we eliminate q and con-
tract (16) to

G(2,1)(p) = − lim
ε→0

g

12(2ωp)2
(2π)4δ(p + q)

×
(

1
p0 − ωp + iε

1
p0 + ωp − iε

× cos
(

1
2
p+p̃−

)(I(p+,−p−) + I(p−,−p+)
)

− 1
p0 − ωp + iε

1
p0 − ωp + iε

× cos
(

1
2
p+p̃+

)
I(p+,−p+)

− 1
p0 + ωp − iε

1
p0 + ωp − iε

× cos
(

1
2
p−p̃−

)
I(p−,−p−)

)
. (16)
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This can easily be written as the sum over two signs:

G(2,1)(p)

=
g

12
(2π)4δ(p + q)

+1,−1∑
σ

+1,−1∑
σ′

cos(pσp̃σ′
)I(pσ,−pσ′

)

× 1
2ωp

1
σp0 − ωp + iε

1
2ωp

1
σ′p0 − ωp + iε

. (17)

3.2 The TO propagator

Equation (17) lets us read off the answers to both our ques-
tions. Since we have not performed any amputation yet,
two propagators must be included in the above expression.
We easily identify the TO propagator as

i∆TO :=
δσ,−σ′

2ωp

i
σp0 − ωp + iε

. (18)

The δσ,−σ′ was included to guarantee TO-diagrammatic
consistency: every directed TO line that leaves one vertex
(σ) has to arrive at another one (σ′). (The correctness of
this addition will become evident in the following exam-
ples.)

Note that the same result is independently obtained
in [12], where the TO propagator is called “contractor”.

The global TO of the vertices is another necessary issue
to be encoded in ∆TO: every line has to leave its earlier
vertex and arrive at its later vertex, and this must be
consistently so for all lines of the diagram. This property
is taken care of by the sign of the pole prescription. As
illustrated in the amplitudes (re)calculated in Sect. 4, only
products of TO propagators in TO consistent graphs (if
A < B and C < A then C < B) will contribute. All others
(e.g. A < B and C < A but B < C) will have their poles
bundled in the same complex half-plane and hence vanish
upon integrating over p0.

3.3 Building graphs

In addition to providing us with a propagator, (17) also tells
us how to construct graphs: multiply together all the build-
ing blocks for a graph of given topology – lines, vertices,
subgraphs – which all depend on the entering or leaving
(σi = ±1) of the lines running into them. Then sum over all
signs. The propagators take care of the correct connection
of all parts of the diagram, especially causal consistency:
if vertex A is later than vertex B and B is later than C,
than A is also later than C.

Even at this point we may already calculate the two-
point zero-loop function, the usual covariant propagator,

i∆F =
+1,−1∑

σ

i∆TO(σ) =
+1,−1∑

σ

1
2ω

i
σp0 − ω + iε

=
i

2ω

(
1

+p0 − ω + iε
+

1
−p0 − ω + iε

)

=
i

p2
0 − ω2 + iε

. (19)

3.4 Complete one-loop integrals

To complete our discussion of G(2,1), and for further use
in Sect. 4.4, we evaluate the I occurring in (17).

Abbreviating the (cut-off-regularized) divergent part
of the planar term by Q = Λ2 + m2

2 ln
(

m2

Λ2

)
, we give

I(p+,−p+), which was already calculated in [9], (31):

I(p+,−p+) =
2

(2π)2

(
Q −

√
−m2

p̃2
+

K1

(√
−m2p̃2

+

))
.

(20)
Analogously we find

I(p−,−p−) =
2

(2π)2

(
Q −

√
−m2

p̃2−
K1

(√
−m2p̃2−

))
.

(21)
Calculating the sum of the remaining integrals still has to
be done. Adding the integrands gives

I(p+,−p−) + I(p−,−p+)

=
∫

d3k

(2π)32ωk

(
6 + e−ik+p̃++ik+p̃−

+ e−ik+p̃+
+ e+ik+p̃−

+ e+ik+p̃+−ik+p̃−
+ e+ik+p̃+

+ e−ik+p̃−)
=
∫

d3k

(2π)32ωk
2
(
3 + cos(k+p̃+) + cos(k+p̃−)

+ cos(k+(p̃+ − p̃−))
)
. (22)

The first and second cosine terms are just the ones yielding
the non-planar parts of (20) and (21). The third one has
to be dealt with explicitly. With (p̃+ − p̃−)µ = 2Θ0µω and
θ00 = 0 we can choose a coordinate system with the z-axis
parallel to the 3-vector θ0i. Thus integrating out the angles
yields

2
(2π)2|Θ0i|ω

∫ ∞

0
dk

|k|
ωk

sin(2|k||Θ0i|ω). (23)

This we evaluate as

=
m

(2π)2|Θ0i|ωK1
(
2m|Θ0i|ω

)
. (24)

Hence we have

I(p+,−p−) + I(p−,−p+)

=
2

(2π)2

(
3
2
Q − 2

m

|p̃+|K1(m|p̃+|) − 2
m

|p̃−|K1(m|p̃−|)

+
m

|Θ0i|ωK1
(
2m|Θ0i|ω

))
. (25)

For further use (see (41)), we finally present another
result. Iff I(p+,−p−) occurs under an integral over d3p
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together with functions f(p) invariant under p → −p we
have ∫

d3pf(p)I(p+,−p−) =
∫

d3pf(p)
1

(2π)2

×
(

3
2
Q − 2m

|p̃+|K1(m|p̃+|) − 2m

|p̃−|K1(m|p̃−|)

+
m

ωp|Θ0i|K1(2mωp|Θ0i|)
)

. (26)

I(p−,−p+) yields an identical result under the same as-
sumption.

3.5 The vertex

To answer our first question we straightforwardly peruse (2)
for no internal lines and four external ones with general
causalities (the σ). Summing over all possible inner (nano-
) TO of the vertex, we proceed as in Sect. 2 and find
(p̃ν := pµθµν)

Γ (4,0)(pσ1
1 , pσ2

2 , pσ3
3 , pσ4

4 )

:=
g

4!
Ψ(−pσ1

1 ,−pσ2
2 ,−pσ3

3 ,−pσ4
4 )

=
g

3

(
cos
(

1
2
pσ1
1 p̃σ2

2

)
cos
(

1
2
pσ3
3 p̃σ4

4

)

× cos
(

1
2

(pσ1
1 + pσ2

2 ) (p̃σ3
3 + p̃σ4

4 )
)

+(2) ↔ (3) + (2) ↔ (4)
)

. (27)

Note that here all the momenta are defined outgoing of the
vertex. With the symmetry of the cosine we explicitly check
the invariance of (27) with respect to any permutation of
the momenta.

Unfortunately, the tadpole has to be treated separately.
From (2) it follows that the tadpole line has to be oriented
forward in time. Thus only 24!

2 nano-configurations at the
vertex contribute. We find for the phase factor of a 1-loop
tadpole (defining pσ2

2 , pσ3
3 outgoing, loop momentum p+

1 )

g

4!
exp


iθµν

3∑
a,b=1

τv
abp

σa
a pσb

b




=:
g

4!
Φ(p+

1 ; −pσ2
2 ,−pσ3

3 )

=
g

12

(
3 + eip+

1 p̃
σ2
2 + eip+

1 p̃
σ3
3 + eip+

1 (p̃
σ2
2 +p̃

σ3
3 )
)

× cos
(

1
2
pσ2
2 p̃σ3

3

)
. (28)

3.6 Summary of diagrammatics

To calculate a Fourier-transformed, amputated amplitude,
use the following rules.

(1) An amputated external line carries the momentum qσe
e ;

σe = +1 if the line is directed into the future, σe = −1 if
it runs into the past:

qσe
e =

(
σe

√
q2 + m2,q

)T
. (29)

(2) For a general, non-tadpolic vertex write a factor
g

4!
Ψ (−pσ1

1 ,−pσ2
2 ,−pσ3

3 ,−pσ4
4 )

=
g

3

(
cos
(

1
2
pσ1
1 p̃σ2

2

)
cos
(

1
2
pσ3
3 p̃σ4

4

)

× cos
(

1
2

(pσ1
1 + pσ2

2 ) (p̃σ3
3 + p̃σ4

4 )
)

+ (2) ↔ (3) + (2) ↔ (4)) , (30)

where all momenta are oriented outwards from the vertex.
(3) For a tadpolic vertex (with loop momentum p+

1 ), write
a factor

g

4!
Φ
(
p+
1 ; −pσ2

2 ,−pσ3
3

)
=

g

12

(
3 + eip+

1 p̃
σ2
2 + eip+

1 p̃
σ3
3 + eip+

1 (p̃
σ2
2 +p̃

σ3
3 )
)

× cos
(

1
2
pσ2
2 p̃σ3

3

)
, (31)

where p2, p3 are oriented outwards from the vertex.
(4) For an inner line, write the propagator

i∆TO =
i

2ω

δσ,−σ′

σp0 − ωp + iε
. (32)

(5) Sum over all σ of the internal lines in order to include
all possible contributions with respect to the time ordering
of the inner vertices.
(6) Integrate over all loop momenta (including tadpole
momenta).

Remember that 4-momentum conservation is valid at
all vertices and along all lines.

4 Examples for the application
of the Feynman rules for NC-IPTOPT

In order to both illustrate the applicability and demon-
strate the validity of the new-found FR (and since a mo-
tivation was given for them, rather than a derivation), we
employ them in the recalculation of the diagrams of Sect. 2.

In addition we will finally be able to calculate the
“mouse”-diagram Γ (2,3), which was one of the main moti-
vations for the development of this diagrammatics.

4.1 The diagrammatic tadpole

Once again we turn toward the tadpole, obtained by ex-
plicitly commuting out the free field operators in [9] and
by use of the IPTOPT formula (39), also there.
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Simplifying (28) by using 4-momentum conservation
pµ
2 =: qµ = −pµ

3 , setting the external momenta on-shell
σ2 = +1, σ3 = −1, and defining p+

1 =: k+, pµΘµν =: p̃ we
find for the vertex factor

g

4!
Φ
(
k+; −q+, q+) =

g

6
(
2 + cos

(
k+q̃+)) . (33)

Note that the σ of the looped line does not occur. Multi-
plying with the propagator (18), summing over σ, σ′ and
integrating over phase space then yields the FT NC tadpole
amplitude, which is well known by now:

Γ (2,1)

=
∫

d4k

(2π)4
g

6
(
2 + cos

(
k+q̃+)) ±1∑

σ,σ′

δσ,−σ′

2ω

i
σk0 − ωk + iε

=
∫

d4k

(2π)4
g

6
(
2 + cos(k+q̃+)

)

× i
2ωk

(
1

k0 − ωk + iε
− 1

k0 + ωk − iε

)

=
g

6

∫
d3k

(2π)3
1

2ωk

(
2 + cos(k+q̃+)

)
. (34)

The actual k0 integration can be performed directly for
both terms separately, heeding non-vanishing semicircles
at infinity. Alternatively they can be brought over a com-
mon denominator, resulting in the usual Feynman propa-
gator.

4.2 The diagrammatic snowman

To further strengthen our confidence in ∆TO and the ver-
tices of (27) and (28), we demonstrate how to utilize them
to evaluate the snowman of Sect. 2.2.

To obtain the amputated, FT snowman amplitude, we
multiply the terms for the two vertices with each other and
with one ∆TO for the head-loop and two for the body-loop.
Using 4-momentum conservation kµ

3 = −kµ
2 , k±

3 = −k∓
2 ,

summing over σv
1 , σw

1 , σv
2 , σw

2 , σv
3 , σw

3 = ±1 and integrating
over the two loop momenta kµ

1 , kµ
2 , we find

Γ (2,2) =
g

4!

∫
d4k1

(2π)4
×

+,−∑
σv
2 ,σw

2 ,σv
3 ,σw

3

Γ (2,1)(k2;σv
2 ,σv

3 )︷ ︸︸ ︷
g

4!

∫
d4k2

(2π)4
∑

σ1,σ′
1

i
2ω1

δσ1,−σ′
1

σ1k0
1 − ω1 + iε

Φ
v

(
k
+
1 ; −k

σv
2

2 , +k
−σv

3
2

)

× Ψw
(
−q−

e ,−q+
f , +k

−σw
2

2 ,−k
+σw

3
2

)

× i
2ω2

i
2ω2

δσv
2 ,−σw

2

σv
2k0

2 − ω2 + iε
δσv

3 ,−σw
3

−σv
3k0

2 − ω2 + iε

=
ig2

(4!)2

∫
d4k1

(2π)4
d4k2

(2ω2)2(2π)4

×
+,−∑

σv
2 ,σv

3

Φv
(
k+
1 ; −k

σv
2

2 , +k
−σv

3
3

)

× Ψw
(
−q−

e ,−q+
f , +k

σv
2

2 ,−k
−σv

3
2

)

× 1
(k0

1)2 − ω2
1 + iε

1
σv

2k0
2 − ω2 + iε

1
σv

3k0
2 + ω2 − iε

=
g2

(4!)2

∫
d3k1

2ω1(2π)3
d3k2

(2ω2)2(2π)3
dk0

2

2π

×
(
Φv
(
k+
1 ; −k+

2 , +k−
2

)
Ψw
(
−q−

e ,−q+
f , +k+

2 ,−k−
2

)

× 1
+k0

2 − ω2 + iε
1

+k0
2 + ω2 − iε

+ Φv
(
k+
1 ; −k+

2 , +k+
2

)
Ψw
(
−q−

e ,−q+
f , +k+

2 ,−k+
2

)

× 1
+k0

2 − ω2 + iε
1

−k0
2 + ω2 − iε

+ Φv
(
k+
1 ; −k−

2 , +k−
2

)
Ψw
(
−q−

e ,−q+
f , +k−

2 ,−k−
2

)

× 1
−k0

2 − ω2 + iε
1

+k0
2 + ω2 − iε

+ Φv
(
k+
1 ; −k−

2 , +k+
2

)
Ψw
(
−q−

e ,−q+
f , +k−

2 ,−k+
2

)

× 1
−k0

2 − ω2 + iε
1

−k0
2 + ω2 − iε

)
. (35)

In the last step we integrated over k0
1 as in Sect. 4.1 and

expanded the sums over σv
2 , σa

3 .
Performing the k0

2 integration reveals how ∆TO selects
the correct σ-signs: the poles in the second and the third
term are double poles, both lying on top of each other in the
same complex half-plane. Hence we may close the contour
in the other half without enclosing any residue, yielding
a vanishing integral (mark that the auxiliary semicircle is
harmless, contrary to the tadpole case).

In the first and the fourth term the poles lie in opposite
halves and yield upon integration 2πi/(2ω2). Hence we find

Γ (2,2) = − ig2

(4!)2

∫
d3k1

2ω1(2π)3
d3k2

(2ω2)3(2π)3
(36)

×
(
Φ
(
k+
1 ; −k+

2 , +k−
2

)
Ψ
(
−q−

e ,−q+
f , +k+

2 ,−k−
2

)
+Φ

(
k+
1 ; −k−

2 , +k+
2

)
Ψ
(
−q−

e ,−q+
f , +k−

2 ,−k+
2

))
.

Evaluation of the phases Φ and Ψ , using momentum con-
servation q−

e = −q+
f and doing some trivial but tedious

trigonometry, yields

Φ
(
k+
1 ; −k+

2 , +k−
2

)
= 2 cos

(
1
2
k+
2 k̃−

2

)

×
(
3 + e−ik+

1 k̃+
2 + e+ik+

1 k̃−
2 + e−ik+

1 (k̃+
2 −k̃−

2 )
)

,
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Φ
(
k+
1 ; −k−

2 , +k+
2

)
= 2 cos

(
1
2
k+
2 k̃−

2

)

×
(
3 + e+ik+

1 k̃+
2 + e−ik+

1 k̃−
2 + e+ik+

1 (k̃+
2 −k̃−

2 )
)

,

Ψ
(
−q−

e ,−q+
f , +k+

2 ,−k−
2

)
= 4 cos

(
1
2
k+
2 k̃−

2

)

×
(
3 + cos

(
k+
2 q̃+

f

)
+ cos

(
k−
2 q̃+

f

)
+ cos

((
k+
2 − k−

2

)
q̃+
f

))
,

Ψ
(
−q−

e ,−q+
f , +k−

2 ,−k+
2

)
= Ψ

(
−q−

e ,−q+
f ,−k+

2 , +k−
2

)
.

Inserting this into (36) we find exactly the same result
as (11), as obtained by the TO procedure in Sect. 2.2.

4.3 The diagrammatic fish

To demonstrate that our diagrammatic rules also work in
a non-tadpolic context, we recalculate the t-channel four-
point one-loop fish graph evaluated in Sect. 2.3. As above
we restrict ourselves to the t-channel.

Using the same notation as in Fig. 4, we fix the exter-
nal on-shell momenta as above: σe = −1, σf = +1, σg =
−1, σh = +1. 4-momentum conservation yields

k3 = −k2 − qe − qf , k0
3 = −k0

2 + ωe − ωf . (37)

Γ (4,1) is then given by

Γ (4,1) =
g2

(4!)2

∫
d4k2

(2π)4

+1,−1∑
σw
2 ,σv

2 ,σw
3 ,σv

3

i
2ω2

i
2ω3

×Ψw
(
−q−

e ,−q+
f ,−k

σw
2

2 ,−k
σw
3

3

)
×Ψv

(
−q−

g ,−q+
h , +k

−σv
2

2 , +k
−σv

3
3

)

× δσw
2 ,−σv

2

σw
2 k0

2 − ω2 + iε
δσw

3 ,−σv
3

−σw
3 (k0

2 + ωe − ωf ) − ω3 + iε

=
g2

(4!)2

∫
d4k2

(2π)4

+1,−1∑
σw
2 ,σw

3

1
2ω22ω3

×Ψw
(
−q−

e ,−q+
f ,−k

σw
2

2 ,−k
σw
3

3

)
×Ψv

(
−q−

g ,−q+
h , +k

+σw
2

2 , +k
+σw

3
3

)

× 1
σw

2 k0
2 − ω2 + iε

1
σw

3 k0
2 + σw

3 ωe − σw
3 ωf + ω3 − iε

=
g2

(4!)2

∫
d4k2

(2π)4
1

2ω2

1
2ω3

×

Ψw

(
−q−

e ,−q+
f ,−k+

2 ,−k+
3

)
k0
2 − ω2 + iε

×Ψv
(−q−

g ,−q+
h , +k+

2 , +k+
3

)
k0
2 + ωe − ωf + ω3 − iε
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Fig. 5. The macro-contribution uvw

+
Ψw
(−q−

e ,−q+
e ,−k+

2 ,−k−
3

)
+k0

2 − ω2 + iε

×Ψv
(−q−

g ,−q+
h , +k+

2 , +k−
3

)
−k0

2 − ωe + ωf + ω3 − iε

+
Ψw
(
−q−

e ,−q+
f ,−k−

2 ,−k+
3

)
−k0

2 − ω2 + iε

×Ψv
(−q−

g ,−q+
h , +k−

2 , +k+
3

)
+k0

2 + ωe − ωf + ω3 − iε

+
Ψw
(
−q−

e ,−q+
f ,−k−

2 ,−k−
3

)
−k0

2 − ω2 + iε

×
Ψv
(−q−

g ,−q+
h , +k−

2 , +k−
3

)
−k0

2 − ωe + ωf + ω3 − iε


 . (38)

Inspecting the complex k0
2 plane of the four terms we see

that the poles of the second and the third term lie on the
same half-plane and hence yield vanishing integrals. We
thus find (for shortness we retain k3, ω3, but of course (37)
still apply)

Γ (4,1) =
−ig2

(4!)2

∫
d3k2

(2π)3
1

2ω2

1
2ω3

(39)

×

Ψw

(
−q−

e , −q+
f , −k+

2 , −k+
3

)
Ψv

(−q−
g , −q+

h , +k+
2 , +k+

3

)
ω2 + ω3 + ωe − ωf − iε

+
Ψw

(
−q−

e , −q+
f , −k−

2 , −k−
3

)
Ψv

(−q−
g , −q+

h , +k−
2 , +k−

3

)
ω2 + ω3 − (ωe − ωf ) − iε


 ,

which is identical to (13).

4.4 The diagrammatic mouse –
where the UV/IR mixing should occur

Confident in our new tools, we embark on calculating the
two-point three-loop amplitude of “mouse-like morphol-
ogy”; see Fig. 5.
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This amplitude is of great interest since in usual non-
commutative QFT it is the simplest graph that becomes
undefined due to the notorious UV/IR mixing problem:
the two tadpoles inserted into the third each bring about
a 1/k̃2

1, introducing a non-integrable IR-singularity into the
remaining, otherwise UV-finite, loop integral – usually. . .

Beginning as in the previous sections (and skipping the
steps that are now familiar), the amplitude of interest is
written as

Γ (2,3)

=
ig3

(4!)3

∫
d4k1

(2π)4
d4k2

(2π)4
d4k3

(2π)4
1

(2ω1)3
1

2ω2

1
2ω3

×
+1,−1∑
σ2,σ3

1
σ2k0

2 − ω2 + iε
1

σ3k0
3 − ω3 + iε

×
+1,−1∑

σu,σv,σw

Φv
(
k+
2 ; kσu

1 ,−kσv
1

)
Φw
(
k+
3 ; kσv

1 ,−kσw
1

)

×Ψu
(
q+
f ,−q+

f , kσw
1 ,−kσu

1

)
(40)

× 1
σuk0

1 − ω1 + iε
1

σvk0
1 − ω1 + iε

1
σwk0

1 − ω1 + iε
.

Two of the eight possible combinations of σu = ±, σv =
±, σw = ± result in the coincidence of all three poles on
the same half of the complex plane, and they thus vanish
under k0

1 integration. The remaining six summands yield

Γ (2,3) =
ig3

(4!)3

(
−i
∫

d3k1

(2π)3
1

(2ω1)5

)(
−i
∫

d3k2

(2π)3
1

2ω2

)

×
(

−i
∫

d3k3

(2π)3
1

2ω3

)

×
(
Φv
(
k+
2 ; k+

1 ,−k+
1

)
Φw
(
k+
3 , k+

1 ,−k−
1

)
×Ψu

(
q+
f ,−q+

f , k−
1 ,−k+

1

)
+Φv

(
k+
2 ; k+

1 ,−k−
1

)
Φw
(
k+
3 , k−

1 ,−k+
1

)
×Ψu

(
q+
f ,−q+

f , k+
1 ,−k+

1

)
+Φv

(
k+
2 ; k−

1 ,−k+
1

)
Φw
(
k+
3 , k+

1 ,−k+
1

)
×Ψu

(
q+
f ,−q+

f , k+
1 ,−k−

1

)
+Φv

(
k+
2 ; k+

1 ,−k−
1

)
Φw
(
k+
3 , k−

1 ,−k−
1

)
×Ψu

(
q+
f ,−q+

f , k−
1 ,−k+

1

)
+Φv

(
k+
2 ; k−

1 ,−k+
1

)
Φw
(
k+
3 , k+

1 ,−k−
1

)
×Ψu

(
q+
f ,−q+

f , k−
1 ,−k−

1

)
+Φv

(
k+
2 ; k−

1 ,−k−
1

)
Φw
(
k+
3 , k−

1 ,−k+
1

)
×Ψu

(
q+
f ,−q+

f , k+
1 ,−k−

1

))
. (41)

Here the six terms correspond to the six possible macro-
time orderings of the vertices: uvw, wuv, vwu, uwv, vuw,
wvu, respectively.

5 No UV/IR mixing in IPTOPT

The most interesting feature of IPTOPT is the appar-
ent absence of the UV/IR mixing problem. This can be
seen in the amplitudes calculated so far by explicitly per-
forming the loop integrations in the result of the previous
Sect. 4.4. No divergence will be fed down via the phases to
the next loop.

5.1 Explicit result for the UV/IR divergence-free mouse

To evaluate (41) explicitly, we start by integrating over k2
and k3. These integrals yield, apart from a possible overall
cosine in k1, exactly the I from Sect. 3.1 and [9]:∫

d3k

(2π)3
1
2ω

Φ
(
k+; kσ

1 ,−kσ′
1

)

=
∫

d3k

(2π)3
2
2ω

cos
(

1
2
kσ
1 k̃σ′

1

)

×
(

3 + e−ik+k̃σ
1 + eik+k̃σ′

1 + e−ik+
(

k̃σ
1 −k̃σ′

1

))

= 2 cos
(

1
2
kσ
1 k̃σ′

1

)
I
(
kσ
1 ,−kσ′

1

)
. (42)

Since these were already evaluated in (20)– (26), deter-
mining the result for all but the last loop integration is a
mere task of compilation. Using the same abbreviations as
above (k1 → k) we find

Γ (2,3) (43)

= − g3

4(3!)3
1

(2π)4

∫
d3k

(2π)3
1

(2ω)5
[
1 + cos

(
k+k̃−

)]

×
[
3
2
Q − 2m

|k̃+|K1

(
m|k̃+|

)
− 2m

|k̃−|K1

(
m|k̃−|

)

+
m

ωk|Θ0i|K1(2mωk|Θ0i|)
]

×
[(

4 + cos
(
k+q̃+

f

)
+ cos

(
k−q̃+

f

))

×
(

3
2
Q − 2m

|k̃+|K1

(
m|k̃+|

)
− 2m

|k̃−|K1

(
m|k̃−|

)

+
m

ωk|Θ0i|K1(2mωk|Θ0i|)
)

+
(
3 + cos

(
k+q̃+

f

)
+ cos

(
k−q̃+

f

)
+ cos

(
(k+ − k−)q̃+

f

))

×
(

2Q − m

|k̃+|K1

(
m|k̃+|

)
− m

|k̃−|K1

(
m|k̃−|

))]
,
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where K1(x) is the modified Bessel function. So far in
non-commutative QFT this expression contained an IR
divergence: poles in k2 of 2nd order. This is not the case
here as

lim
k→0

(
k̃±

µ

)2
= −m2Θ2

0i < 0. (44)

This limit will be discussed in more detail in the next
section.

Where does this first instance of the absence of the no-
torious UV/IR mixing problem stem from? It is due to the
appearance of on-shell 4-momenta in the non-commutative
phases: since, because of the mass, the 0-component re-
mains non-vanishing for all values of the 3-momentum, no
pole can appear.

5.2 Argument for the general absence of UV/IR mixing

Encouraged by the above explicit result we give an argu-
ment for the absence of this problem to all orders – for all
Γ (n,l) – in (IPTO) perturbation theory in a more general
way (although we refrain from writing “proof”).

To arrive at this conclusion we remember the nth order
k-point Green functions given by the Gell-Mann–Low for-
mula

Gn(x1, . . . , xk) =
in

n!

∫
d4z1 . . .d4zn (45)

× 〈0|Tφ(x1) . . . φ(xk)LI(z1) . . .LI(zn)|0〉con,

where T denotes the time ordering and LI(z) is the inter-
action part of the Lagrangian, g

4! (φ � φ � φ � φ) for non-
commutative φ4-theory.

Note that all fields occurring in (45) are free fields,
their Fourier transforms are on-shell quantities, the 0-
component of the four-vector being ω(k):

φ(x) =
∫

d3k

(2π)3
(
φ̃(k)e−ik+x + φ̃†(k)e+ik+x

)
. (46)

Evaluating the �-product between these FT free fields
hence produces phase factors containing on-shell momenta
k±

µ only (see also the discussion in chapter 3 of [9]). This
remains true after integrating out some (or all) of the loop
momenta occurring later in the evaluation. At no point of
the further calculations (evaluating TO, FT, amputation,
. . . ) will this property be changed.

Why does this novel feature of IPTOPT prohibit the
occurrence of the usual UV/IR problem? First note that for
timelike (on-shell) four vectors kµ we find k̃µ to be spacelike

Θµνkµkν = 0 = (kµ(Θµν)kν := k̃µkµ, (47)

and hence

k̃µk̃µ < 0 ∀k̃µ �= 0µ , k̃µk̃µ = 0 ↔ k̃µ = 0µ. (48)

The case k̃µ = 0µ is only possible for massive theories iff
Θµν is of less than full rank, which is excluded in IPTOPT

since we demand Θi0 �= 0: if Θµν were of less than full rank,
one could always transform it into Θ′

µν , with Θ′
i0 = 0, which

we excluded by definition.
Hence we find

k̃2 = k̃µk̃µ < 0 ∀k. (49)

As the usual (i.e. the one found in the literature) UV/IR
problem always occurs in the form of a 1/k̃2 pole, which, for
off-shell kµ and k̃µ, introduces a possible new singularity at
0, we see that IPTOPT is free from this (type of) problem:
zero is never reached by k̃2.

It is at this point that our argument degrades from
being a proof, since it excludes the appearance of this
particular form of mixing only. But in what other guises
it still has to be excluded we are not able to discuss yet.

5.3 A short note on PT

As a short side-remark we would like to draw attention to
the behavior of the amplitudes calculated above under P
and/or T acting on the external momenta:

P : q → −q, T : σ → −σ. (50)

Hence we find that

P (q±) = −q∓, T (q±) = q∓, (51)

which do not leave the amplitudes calculated above invari-
ant when only one of P, T acts on them. However, under
the combined action of PT :

PT (q±) = P (q∓) = −q±, (52)

the amplitudes remain unchanged, since the external mo-
menta occur in cosine only.

Invariance under PT , however, is a direct consequence
of the unitarity of the S-matrix and the existence of free
states; see [14] and references therein.

6 Outlook

In this article one further step was taken in the program
of IPTOPT: Feynman rules were stated and demonstrated
to yield the same results as the TO amplitude. In a sense,
IPTOPT developed into interaction-point diagrammatics.
Although one should notice that these FR are rather con-
jectured than truly derived, since (Minkowskian) canonical
instead of (Euclidean) PI quantization was employed. A
more general and rigorous method for obtaining them has
recently been found in [12].

Also a strong motivation for further work utilizing this
approach was discovered: the possibility of the general ab-
sence of the UV/IR problem. Although a strong argument
in favor of this feature was given, a true proof is still miss-
ing and certainly highly desirable. In principle two routes
to this end are imaginable: either continuing in IPTOPT,
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investigating (2) for the possibility of an inductive proof; or
by making use of the diagrammatics proposed in this work.
The second approach could also yield important insights
into how to pursue the great question of renormalizability
and renormalization of non-commutative QFT.

Further work may deepen our understanding of the in-
tricate connections between nano-causality, unitarity,
UV/IR mixing (i.e. its absence), CPT invariance and renor-
malization. Moreover, possible phenomenological implica-
tions of IPTOPT will be of great interest [15]. Anyway, with
non-commutative QFT a tool to a better understanding of
commutative QFT is available, illustrating by similarities
and differences the fundamental features of the two sets of
theories.

Acknowledgements. VP would like to thank Prof. M. Schweda
and R. Wulkenhaar for helpful discussion and support. PF
would like to thank C. Jarlskog, T. Hurth, L. Álvarez-Gaumé
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